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Abstract 

 
 The general purpose computer has become pervasive and is supporting an increasing number of  functions, 

including music, video, gaming, communications, banking, business, process control, and critical in frastructure. The use of 

a single computer for mult iple functions, and the interconnection of mult iple computers through a common network have 

reduced the isolation that protected such functions in the past. If we are to use common systems for multip le functions, we 

need mechanis ms that provide the isolation needed to protect each function from interference by others. Without such 

isolation, vulnerabilities and mis-trust in any part of the system can propagate and compromise the rest of the system. 

Isolation techniques form an integral part of security in systems and networks. This work surveys isolation techniques for 

operating systems and networks  and describes systems built using those techniques. An intuitive taxonomy is proposed for 

organizing  these techniques. The paper aims to provide a crit ical understanding of what already exists and what needs to be 

done with respect to isolation security for building next-generation secure systems.  

1. Introduction 

 The unprecedented growth of the network-enabled personal computer in a variety of form-factors, 
including the laptop, desktop, mobile, handheld devices, when combined with the increase importance of the 
internet has changed the dynamics of security. Computers which were once used only for number-crunching and 
electronic data storage are now used for functions not previously envisioned. Among these functions are music, 
video, gaming, communications, banking, business, process control, and critical infrastructure. 

 Unfortunately, this increased importance of the network-enabled personal computer has enabled new 
mechanisms for attack through the easy propagation of malware

1
. Malware works on the premise that infecting 

one part of the system gives easy access to other parts of the system and in most cases access to the network too. 
As computers have become more connected to one another, the malware threat has increased. It is essential that 
instead of just relying on defense techniques, the next generation of system software must be designed from the 
ground-up to provide stronger isolation of functions.  As an example, consider the case of an employee logging 
remotely into a corporate network. If his system is infected with viruses introduced by malicious online games 
he may have played, the infection can now easily spread into the employees’ corporate network. Thus, isolation 
becomes an essential building block for providing security in today’s systems and networks. One must note here 
that use of isolation as a building block is not limited to only security but finds uses in other areas of software 
engineering like providing failure isolation for components, component modularity, improving system structure 
and easing system evolution. This work focuses primarily on using isolation for security. 

 The need for isolation is not a new requirement in Computer Security. It was articulated clearly almost 
35 years ago in Computer Security Technology Planning Study Report [1] by James Anderson, much before the 
advent of the Internet and the widespread proliferation of personal computers. The report identifies that resource-
sharing between users is the key cause of security and privacy issues and that execution of programs must be 
controlled to build a secure resource sharing system.  The notion of a Reference Monitor was then proposed as a 
building block  for designing a secure resource sharing system. As defined in [1], the function of the Reference 
Monitor is to validate all references (to programs, data, peripherals etc) made by programs in execution against 
those authorized for the subject (user, etc). The Reference Monitor is also responsible for assuring that the 
references to shared resource objects are of the right kind (read, read/write etc). It can be argued that most of the  
isolation research presented in this paper is some variation on the generic concept of a reference monitor.  

                                                 
1 The term malware in this paper is used to refer to all types of existing bad software including worms, v iruses, rootkits, 

Trojans, spyware etc.  



 In current operating systems, the notion of isolation of functions is supported at a minimum by operating 
system processes. The operating system kernel provides this isolation by using abstractions of virtual memory 
provided by the hardware. This simple isolation has proven extremely inadequate in dealing with the various 
penetration techniques used by malware which allow an adversary to access resources otherwise not meant to be 
accessed by a process. Research over the years has focused on providing the necessary isolation for mitigation of 
these issues. The well-known mitigation techniques include language-based protection provided by type-safe 
languages and certifying compilers, sandboxing-based protection as provided by different kinds of reference 
monitors, kernel-based protections, hardware-based protection and the more recently popularized hypervisor-
based protection. This paper surveys the currently employed isolation techniques and proposes an intuitive 
taxonomy to organize the techniques. Around thirty different systems which implement those techniques (single 
or a combination of techniques) are then analyzed and categorized as per the taxonomy.  

 Unfortunately, techniques that have been very useful in improving the security of individual computer 
systems do not extend very well into the network environment.  Controls on the flow of information within an 
operating system are easily circumvented when a process communicates unconstrained with processes outside 
the local system. Most of the current techniques treat the system in isolation and do not really concern 
themselves with the network aspect. But, in the face of emerging threats as outlined above, entities involved in a 
transaction over a distributed network require stronger guarantees of isolation than currently provided.   

 The paper aims to provide a critical understanding of what already exists and identify new challenges in 
isolation mechanisms for building next-generation secure systems. To that end, this paper serves as a 
bibliography of isolation techniques and should provide a single reference point for researchers in this area. The 
rest of the paper is structured as follows: Section 2 introduces required terminology and formulates the isolation 
problem in a generic way. Sections 3 and 4 present taxonomy for categorizing the isolation techniques. Section 5 
provides a brief description of systems built using isolation techniques. Section 6 presents observations made 
using the survey and Section 7 concludes the paper.  

2. The isolation problem 

 This section introduces a generic model for isolation in systems. Two examples are presented to highlight the 
necessity of isolation in individual systems and networked systems. The terminology introduced below is then 
used to compare the systems that are described in section 4.   

2.1 Terminology 

Task - A task is an abstraction for a piece of software that consumes resources to perform a specific function. 
Examples of tasks can be any piece of software such as web browsers and FTP server. 

Shared Resource - A shared resource is at least one of a CPU, storage, or a network. Tasks perform their 
functions by sharing resources with other tasks. While sharing of resources helps in efficient utilization of 
resources, it is also one of the root causes of security issues.  

Protection Domain - A Protection Domain is a logical container for task(s) and shared resources.  The protection 
domain enforces the protection boundary policies using isolation techniques. An example of a protection domain 
is an operating system which allows multiple tasks to run while competing for CPU/Memory/Network resources 
or a virtual system [1] which abstracts resources from one or more systems and presents them as if part of a 
single system.  

Trusted Computing Base (TCB) – As defined by Lampson [2], TCB is a small amount of software and 
hardware that security depends on and that we distinguish from a much larger amount that can misbehave 
without affecting security. 

 With the above definitions in mind we can define the task isolation problem as, the problem of separating 



and protecting tasks from other executing tasks within a protection domain and from tasks in other protection 
domains. 

 Illustration 1 provides a visualization of the terms just described. The tasks are represented by ovals and they 
run within protection domains. The protection domains enforce policies on the running tasks. The thickness of 
the protection domains implies the extent to which the TCB is required to enforce the protection domain. The 
isolation model also allows for recursive protection domains, that is, there could be protection domains within 
protection domains as shown in the figure. 

 

 

 

 

 

 

 

 

 

2.2 Examples of protection domains 

 Consider an operating system (see illustration. 2) to be a protection domain comprising different tasks. The 
isolation problem for the OS is to provide separation between the tasks running on the same node and also 
prevent other outside tasks from inadvertently accessing tasks in its domain. 

 

 

Illustration 2: Example of a local 
protection domain. The browser, word 

software and the kernel functions are all 
part of same protection domain. 

Illustration1: Isolation Model 

 

 

 



 

 Consider the distributed case (see illustration. 2), in which a user logs into his company network over VPN 
to access documents for editing. In this case, the protection domain comprises the companies file server, the 
user’s VPN client and the user’s word processing software. The protection domain policies should protect the 
tasks from each other and also prevent any unidentified task (like the browser in the example) from entering this 
virtual system and also prevents anything from within the domain from making illegal accesses outside the 
system. It is easy to see here that more is required of the TCB in the distributed case than in the single case. 

 

 

 

3. Taxonomy of isolation techniques 

 As seen in section 2, there are two types of systems for which isolation can be defined: individual and 
networked. The distinction between individual systems and networked systems is important because the threat 
model is different in both cases and hence the isolation requirements change. Also, the TCB in a networked 
system is distributed and hence the isolation mechanism has to take into account the trustworthiness of the TCBs 
in the system. Though this is well understood, it is surprising to note the little attention that isolation in 
networked systems has received as compared to the plethora of work done in individual systems. Current 
techniques for providing isolation in networked systems rely mostly on encrypting the traffic flowing on the 
network. But, as the example in section 2 shows, this does not necessarily solve the isolation problem.  This 
point is explored further in section 6. As there is not much reported work on isolation in networked systems, the 
taxonomy presented here in this section applies only to individual systems.  Illustration 3 provides a visual of the 
taxonomy.   

 Isolation techniques for individual systems can be categorized as follows: (1) Language-based isolation (2) 
Sandbox-based isolation (3) Virtual Machine based isolation (4) OS-kernel based isolation and (5) Hardware-
based isolation. Individual sections explore the categories further. The individual categories are explored further 
below. 

3.1 Language-based Isolation 

Language-based isolation is isolation provided by programming languages, language compilers, assemblers 
and/or by runtime environments. They essentially force the programmer to comply with a set of rules that 

 

Illustration 3: Networked Protection Domain 



enforce isolation between the program and other programs. For example, type-safe programming languages, 
such as Modula, Scheme, or Java, ensure that operations are only applied to appropriate values. As stated in [3], 
they do so by guaranteeing that programs can only access appropriate memory locations and that control 
transfers happen to appropriate program points.  

 Language based isolation can be further classified into two categories based on how it is enforced: 

(a) Type Systems:  Type-systems enforce isolation using either programming language semantics, 
compilers, run-time systems or a combination of the above.  They make sure that programs can access 
only appropriate memory locations and that control transfers happen only to appropriate program points. 
Examples of type systems are programming languages like ML, Scheme, Modula-3, Java.  Isolation 
boundaries are usually enforced using a combination of compile-time and run-time techniques.  

As stated in [3], the key idea in type systems to enforce security policies is to shift the burden of proving 
that a program complies with a policy from the code recipient (the end user) to the code producer (the 
programmer). The programmer is forced to write the program in conformance with the type system; the 
end user need only type-check the code to ensure that it is safe to execute. Type-systems thus provide a 
lightweight way to enforce memory and control safety as opposed to the traditional ways of enforcing 
isolation using OS/hardware protection mechanisms like page-tables/segmentation etc.  

Example Systems: SPIN, Modula-3, ML, Scheme, Java  

(b)  Certifying Compilers:  As defined in [3], a certifying compiler is a compiler that, when given source 
code satisfying a particular security policy, not only produces object code but also produces a 
certificate—machine-checkable evidence that the object code respects the policy. A widely-used example 
is the javac compiler for Java which produces annotated byte-code from a high-level Java program. The 
annotated code (in JVML) becomes the certificate for the high-level code. This certificate is then used 
by a verifier to verify the type-safety of the byte-code.  

In general, certifying compilers allow for a very versatile way of specifying security policies as 
compared to simple type-safety notions provided by programming languages. Javac compiler, TAL 
(Typed Assembly language) and PCC (Proof Carrying Code) are examples of certifying compiler 
approaches. TAL [5] or Typed Assembly Language extends the notion of JVML byte-code to machine 
language of   real machines. As stated in [5], the basic idea behind TAL is to encode high-level typing 
abstractions and security policies from high-level language constructs to typed machine language.  The 
obvious advantages of doing so are that it removes the dependence on virtual machines, high level 
languages and aids faster execution on the native platform. But, TAL still can only enforce the traditional 
type-safe security policies.  

The most widely recognized example of Certifying Compilers is PCC [4] or Proof-Carrying Code. PCC 
[4] uses formal proofs represented in a meta-language to represent the safety and correctness 
requirements of code. The code-receiver on the other end uses a theorem-prover to validate the proof 
attached with the code. The TCB in PCC is very small and it does not impose run-time penalties. A big 
advantage of using PCC is that it has a very expressive logic to construct desired policies and thus is 
more powerful than simple type-safety.  

  Examples: Proof Carrying Code [4], TAL [5] 

3.2 Sandbox based isolation 

 Sandboxing was first introduced by Wahbe et.al.[14] and was defined by them as a technique for software 



encapsulation of untrusted code such that it may not escape its fault domain
2
. Their technique involved 

modifying the program binary to insert additional checks around each store or jump so that the program could 
only make jumps into its own code segment and write to data only in its data segments. The definition of 
sandboxing as adopted in this paper is not restricted to the definition presented in [14] but instead is defined 
more generically as “a technique for creating confined execution environments for running  untrusted programs 
on the same machine” A simple example of a sandbox is the UNIX chroot jail which is a very simple way to 
provide remote users a restricted and virtual view of the file system.  

 There are three techniques that may be used to implement sandboxes based on how a program's activity may 
be restricted. One can use the simple technique of applying access controls like file ACLs/user ACLs to restrict 
activity or restrict behavior at the instruction level or at the system call level. It is easy to see that each level of 
monitoring has its own advantages and disadvantages and they all help protect against specific threats. Based on 
the above three techniques, sandbox-based isolation can be further classified as: 

(a) Instruction Set Architecture based (ISA based): Any sandbox technique that restricts activity of 
programs at the instruction level falls under this category. One of easiest ways in which this type of 
sandboxing is implemented is by binary rewriting where additional instructions are added before 
existing code (esp. jumps and stores) to check for memory access violations. One of the problems with 
this technique is that it is architecture dependent and more so it may also be dependent on the type of the 
instruction set (RISC or CISC). Earlier techniques in Software Fault Isolation (SFI) suffered from being 
only RISC capable but recent projects like PittSFIeld [15] have shown that SFI can be applied to CISC 
architectures too.  

Examples:  SFI [14], Program Shepherding [10], Inline Reference Monitors [58], PittSFIeld [15]. 

(b) Application Binary Interface based (ABI based): The ABI is the interface between an application 
program and the operating system or between the application and its libraries. In this technique, a 
sandbox is constructed by controlling the ABIs that an application uses to restrict its behavior. A 
common way of specifying restricted ABIs for an application is via a configuration file.  

Examples: Janus [12], MAPBox [13], Consh [20], SLIC [25] 

(c) Access control based (ACL based): In access control based sandboxing, the restriction of activity is 
provided via explicit permissions that are applied to accesses by programs. In this class, the access 
control can be applied to files, network, processes, pipes, devices etc. UNIX chroot is the simplest 
example of this type of sandboxing, where the remote users’ view of file system is constricted to a 
directory by controlling accesses to other directories in the file system.  The difference between ACL-
based and ABI-based sandboxing is that the ABI-based sandboxing relies only on preventing system 
calls while the ACL-based method is a little more generic in its applications.  Another subtle difference 
is the fact that in ACL-based systems, the system calls may themselves be modified to implement 
policies while in ABI-based systems the system calls are prevented from executing.  

Examples: UNIX Chroot-jail, TRON [17], Sub-Operating Systems [15], SubDomains [21], Consh [20], 
FreeBSD Jails [21], Chakravyuha [16], SBOX [22], One Way Isolation [18] 

3.3 Virtual Machine based isolation 

 Virtual Machines in the simplest sense are software abstractions of real machines. They provide a virtual 
platform for running tasks. Virtual machines have been employed to provide various features like emulation, 
optimization, translation, isolation, replication etc [36]. This paper will only consider virtual machines from an 
isolation perspective. As defined in [36], a virtual machine can support individual processes or a complete 

                                                 
2
 Fault Domains as defined in [14] are logically separate portions of an applications address space. 



system depending on the abstraction level where virtualization occurs. Some VMs support flexible hardware 
usage and software isolation, while others translate from one instruction set to another. Based on this 
observation we can classify Virtual Machine based isolation into 4 categories as: 

(a) Process Virtual Machines: Process Virtual Machines support individual processes or a group of 
processes and enforce isolation between the processes and operating system environment. Process 
virtual machines can run processes compiled for the same ISA

3
 or for a different ISA as long as the 

virtual machine runtime supports the translation.  Isolation policies are provided by a runtime 
component which runs the processes under its control. Isolation is guaranteed because the virtual 
machine runtime does not allow direct access to the resources that the underlying real system provides. 
Earlier process virtual machines like the Java Virtual Environment (JVM) supported only single 
processes but research projects like Alta [8] have made it possible to run multiple processes within the 
same virtual machine. Similarly, dynamic binary optimizers like DynamoRIO [11] which have been 
extended to provide isolation also fall under this category.  

Examples: DynamoRIO with Program Shepherding extensions [10], Java VM [39], MS Common 
language runtime [40], Alta [8], PeaPod [57]. 

(b) System Virtual Machines (Hypervisor Virtual Machines): System virtual machines provide a full 
replica of the underlying platform and thus enable complete operating systems to be run within it. The 
virtual machine monitor (also called the hypervisor) runs at the highest privilege level and divides the 
platforms hardware resources amongst multiple replicated guest systems. All accesses by the guest 
systems to the underlying hardware resources are then mediated by the virtual machine monitor. This 
mediation provides the necessary isolation between the virtual machines. System virtual machines can 
be implemented in a pure-isolation mode [36] in which the virtual systems do not share any resources 
between themselves or in a sharing-mode in which the VM Monitor multiplexes resources between the 
machines. Pure-isolation mode virtual machines are as good as separate physical machines. Examples of 
such systems are the IBM's PR/SM system [37]. Such systems, though highly secure, are not practical 
for desktop-like environments. Systems like XEN [51] and KVM [53] have commercialized the sharing 
hypervisor approach in desktop operating systems. 

  Examples: XEN [51], sHYPE [56], PR/SM [37], Terra [33], Nizza [35], Nexus [32], SVGrid [31], 
VMware GSX Server [41] 

(c) Hosted Virtual Machines: Hosted Virtual Machines are built on top of an existing operating system 
called the host. The virtualization layer sits above the regular operating system and makes the virtual 
machine look like an application process. One can then install complete operating systems called guest 
operating systems within the host virtual machines. The VM can provide the same instruction set 
architecture as the host platform or it may also support a completely different instruction set architecture 
(ISA), like running Windows IA-32 OS on a Mac running on the PowerPC platform. VMware GSX 
Server is an example where the host ISA and guest ISA are same. Isolation in hosted virtual machines is 
as good as the isolation provided by the hypervisor approach except that the Virtual Machine Monitor in 
the case of the hosted VM does not run at the highest privilege. The processes running inside the Virtual 
machine cannot affect the operation of processes outside the virtual machine. System emulators are also 
loosely classified under hosted virtual machines [refer section 4.3].  

Examples: VMWare Workstation[], Microsoft Virtual PC, Qemu [48], Simics [59] 

(d) Hardware Virtual Machines: Hardware virtual machines are virtual machines built using virtualization 
primitives provided by the hardware like processor or I/O.  The advantage of hardware level 
virtualization is tremendous performance improvements over the software based approaches and 
guarantees better isolation between machines. The isolation provided by the hardware assisted 

                                                 
3 ISA stands for Instruction Set Architecture. Examples are x86, PPC etc.  



virtualization is more secure than that provided by its software counterpart for obvious reasons. This 
form of virtualization has been exploited in KVM [53] which is based on the virtualization instruction 
set of the Intel VT-x [60] and AMD-V processors.  

Examples: Intel VT-x [59], AMD-V, KVM [53]  

3.4 OS-kernel based isolation  

 OS-Kernel based isolation is the most traditional form of isolation. The operating system kernel has been 
always regarded as the most trusted component in the system and is thus entrusted with enforcing policies that 
are required for isolation between applications and between applications and the kernel. For a long time, the 
isolation guaranteed by the operating system's notion of 'process' was the only isolation that was provided in 
most mainstream operating systems.  

 Much research has focused on reducing the size of the kernel because a large kernel implies a larger TCB 
and hence a larger set of security problems. These efforts have resulted in the Microkernel [42] and Exokernel 
[43] based operating system kernels as opposed to the traditional monolithic kernels. While the design 
philosophy may differ between the types of the kernels, the core requirement of being a secure resource manager 
is still satisfied by all the types. That is, all kernels account for resources used by the processes, tasks or domain 
and guarantees isolation between them. Monolithic kernels provide an isolation guarantee by using the Memory 
Management Unit (MMU) of the processor while the Exokernel provide it by implementing fine access controls 
on the resource accesses by the applications.  

 The various kernels differ in their design and their requirements but all of them provide the basic isolation 
between the applications running on top of them. Thus, this category of operating systems is not further 
subdivided into the various types of kernels. Instead, the different kernels are the examples of this category.  

Examples: Monolithic Kernels, Mach Microkernel [42], Exokernel [43], Hypervisors [51], Singularity [34], 
Perseus [49] 

3.5 Hardware-based isolation 

 Isolation guaranteed by way of hardware controls is hardware-based isolation. This is the strongest form of 
isolation as it is not easily circumvented by software at runtime. This form of isolation is provided either by the 
processor or by special devices which work in conjunction with the processor. Most of the processors provide a 
Memory Management Unit (MMU) which helps in assigning different virtual spaces to different processes and 
thus provides isolation between them. Similarly, IOMMUs, IO Memory Management Units, are hardware 
devices that translate a device DMA addresses to physical addresses. As stated in [45] , an isolation capable 
IOMMU restricts a device so that it can only access parts of memory it has been explicitly granted access to. 
IOMMUs increase system availability and reliability by preventing malicious devices from performing arbitrary 
DMAs. As stated in [45] [46], operating systems can utilize IOMMUs to isolate device drivers; hypervisors 
utilize IOMMUs to grant secure direct hardware access to virtual machines.  ARM TrustZone [47], and Legba 
[55] are two other examples in this category. 

Examples: MMU, Calgary IOMMU [45], DART IOMMU [46], ARM TrustZone [47], Legba [55] 



 

 

  

Illustration 1: Taxonomy of isolation techniques 



4. A note on the taxonomy  

 The taxonomy has a few categories which seem to overlap in their definitions. But there are few subtle 
differences which justify their separate existence. This section describes the subtle differences which distinguish 
the categories in the taxonomy.  

4.1 Hypervisors vs. OS kernels 

 At first glance, hypervisors or virtual machine monitors don't look any different than OS-kernels. They 
especially bear a striking similarity to the concept of microkernels. As suggested in [47], VMMs were born out 
of a necessity to improve system utilization by facilitating time-sharing of machines. The time-sharing aspect 
also meant that multiple users may own different virtual machines and thus strong isolation guarantees were 
essential. Microkernels on the other hand were born out of a desire to create small OS kernels which would 
enable easier validation and porting. Other kernels like Exokernel [43] were born out of the need to enable 
application level resource control. Thus, as far as the isolation problem is concerned, the VMM or the hypervisor 
is the only technique that handled the isolation problem. Other kernels also provide isolation, but it is not their 
major requirement as it is for the hypervisor. It was thus deemed inappropriate to classify hypervisors as just 
another kernel.  

4.2 Virtual Machines vs. Sandboxes 

 Virtual machines have been loosely referred to as sandboxes in some literature. They can be loosely referred 
to as sandboxes as they provide a confined execution environment. But the striking difference between the 
sandbox category presented in the taxonomy and the virtual machines is that the sandbox provides a confined 
execution for untrusted code on the same machine. Virtual machines provide a completely different machine 
(albeit a virtual machine) for code to execute. Thus, even though they provide a confined execution environment, 
they are stronger in their isolation guarantees than simple sandbox techniques. Sandboxes are essentially 
additional patches  on top of existing systems to separate trusted and untrusted code.  

4.3 Where do System Emulators fit? 

 System emulators provide a complete software emulated processor. Traditional emulators execute every 
instruction in software and thus are very slow in their performance. They have nevertheless been used 
extensively for system testing, debugging and educational purposes. The main difference between a VMM and 
an emulator is that a VMM executes all the instructions directly on the underlying hardware instead of 
emulating. Thus VMMs are more practical techniques of isolation. Recently emulators like Simics [59] and 
Qemu [48] have started supporting a virtualized mode of execution where they try to behave like a VMM instead 
of a full system emulator. System emulators can thus be considered to be a part of Hosted Virtual Machines.  



5. Survey of systems 

 This section surveys and categorizes 31 systems built using the above techniques or a combination of above 
techniques to provide isolation in various environments. There is a bias towards considering the security aspects 
of the system and other features are intentionally omitted.  A tabular format is chosen over a more verbose 
format as the number of systems is very large. The tabular format gives a quick overview of the critical features 
of each system and provides pointers for further exploration.  

 For each surveyed system, the isolation mechanisms are listed as per the taxonomy along with a brief 
description. Systems are compared as per the terminology developed in Section 2. The column 'Tasks' lists the 
tasks that are being protected or protected from in the system. 'Protection Domain' (aka the container of tasks and 
resources) is the outermost protection boundary that is implemented by the system. Note that recursive 
protection domains are not mentioned. 'TCB' comprises of the minimal set of trusted components on which the 
security of the system relies. 'Policies' list the policy mechanism of the system. 'Year published' notes the year of 
publication of the paper describing the system. 

Table of Systems 

# 
 

System Isolation 
Mechanism 

Used 

Brief Description Tasks Protection 
Domain 

(Container) 

TCB  Policies Year 
Pub. 

1  SPIN [6] Type 

System  

Uses language features of 

Modula-3 to enforce 

boundaries and ensure 

isolation between code.  

Kernel 

Extensions  

OS  OS Core Services 

of memory and 

processor + 

External Modula-

3 Type Checker 

Static 

policies 

enforced by 

language type 

safety 

1995 

2 j-Kernel [7] Type 

System  + 
certifying 

compiler + 

Microkernel 

Uses language features of java 

to provide multiple protection 
domains over a single JVM. 

Sharing between tasks is 

enabled by sharing capability 

objects. 

Java 

Programs,    
Servlets  

Java Virtual 

Machine 

JVM + j-kernel 

library + Java 
interpreter and 

compiler 

Static 

policies 
enforced by 

the language   

+ policies       

specified by 
programmer 

1998 

3 Program 
Shepherding 

[10] 

ISA-based 
sandboxing 

Monitors control flow 
transfers in a process 

dynamically to enforce 

security policies. Existing 

process binaries do not require 

any changes.  

OS 
Process  

RIO 
Framework 

RIO framework 
+ Operating 

System 

Statically 
specified 

within a 

policy file 

2002 

4 Janus [12] ABI-based 

sandboxing 

Monitors system call activity 

and applies policy restrictions 
to prevent execution of 

dangerous system calls.  

OS 

Process  

JANUS 

Framework 

Janus Framework 

+ Operating 
System 

Statically 

specified 
within a 

policy file 

1996 

5 Sub 

Operating 

Systems [15] 

ACL-based 

sandboxing 

Tags each active data object 

like JavaScript, word files etc. 

with a different use rid to 

implement finer permissions 
on an object basis. This 

effectively creates a sandbox 

for active content. 

OS  

Process  

Operating 

System 

Operating 

System + SubOS 

extensions in 

application. 

Static or 

dynamic. 

Depends on 

how the 
application 

chooses to 

implement. 

2000 



6 PittSFIeld 

[30] 

ISA-based 

sandboxing 

PittSFIeld enforces security 

policies in CISC architectures 

by constraining memory 

accesses and control flow in 
untrusted binary code. The 

idea is to make sure that data 

and code accesses are all in 

safe regions.  

OS 

Process 

OS process 

with a 

reference 

monitor 

Operating 

System + Binary 

Rewriter 

Static 

policies as 

defined in the  

binary 
rewriter 

2006 

7 Terra [33] Hypervisor 

Virtual 

Machine 
based 

Terra is a flexible architecture 

for Trusted Computing which 

allows applications with 
varying security requirements 

to run simultaneously. Terra 

uses a Trusted Virtual 

Machine Monitor, a 

hypervisor, to partition the 
platform into multiple isolated 

virtual machines. All 

applications are thus 

completely isolated.  

Virtual 

Machines 

Terra 

Hypervisor 

Framework 

Trusted Virtual 

Machine Monitor 

+ TPM hardware 

Static 

policies as 

enforced by 
hypervisor 

2003 

8 Nexus [32] Microkernel

- based + 

Processor 
based 

hardware 

isolation 

Nexus is a trustworthy OS 

design which uses the Trusted 

Platform Module for 
trustworthy computing. 

Applications are run in 

isolated protected domains 

and secure memory regions 

are provided for storing 
sensitive data.  

Isolated 

Protection 

Domains  

Microkernel 

Operating 

System 

Microkernel + 

TPM Hardware 

Decentralized

, credentials-

based 
authorization 

using the 

Nexus 

Authorization 

Logic, which 
encompasses 

certificates 

attesting to 

provenance 
analysis, or 

rewriting as a 

bases to trust 

a components 

claims and 
requests. 

2006 

9 Singularity 
[34] 

Type 
Systems + 

Certifying 

Compilers +   

Microkernel 

Singularity is a microkernel-
based OS which uses language 

features to provide memory 

safety and does not depend on 

hardware MMUs. The basic 

unit of isolation in singularity 
is called SIP (Software 

Isolated Process) which uses 

type and memory safety 

features of Sing# to create 

closed and verifiable spaces 
for code. The communication 

between SIPs happens via 

contract channels.  

Software 
Isolated 

Processes 

(SIPs) 

Singularity 
Kernel 

Singularity 
Kernel + Sing# 

Language 

Compilers + 

Runtime 

Static 
policies as 

offered by 

type-safe 

sing# and the 

singularity 
kernel 

2007 



10 Nizza [35] Microkernel 

based 

isolation + 

Sharing 
Virtual 

Machine 

Based 

Isolation + 

Language 
based 

isolation 

Nizza is a secure system 

architecture that promises a 

smaller TCB. Nizza supports 

legacy applications by way of 
language based VM's or  

paravirtualized VMs or 

platform emulating VMs.  

Isolation is Nizza is provided 

by a lightweight L4 
microkernel. The kernel 

provides fine-grained 

protection between the 

domains.  

Either a 

language 

based VM 

or a 
paravirtual

ized VM 

or a 

platform 

emulating 
VM 

L4 

Microkernel 

Fiasco (L4) 

Microkernel + 

Secure Platform 

Layer ( Loader + 
Trusted GUI  etc)  

Static 

policies as 

enforced by 

the 
microkernel  

interface  

2005 

11 Secure 

Virtual 

Enclaves [52] 

ACL-based 

sandboxing 

(but over a 
network) 

A secure virtual enclave is a 

collaboration infrastructure 

which allows multiple 
organizations to share 

information with each other 

but still maintaining local 

administrative control over 

their own data. SVE extends 
ACL based sandboxing over a 

network. 

Operating 

System 

Processes 

SVE 

Middleware  

SVE Middleware 

+ Operating 

Systems 

Static 

policies 

specified in 
different 

enclaves 

2000 

12 XEN on 

HVM 

processors 

[51] 

Hypervisor  

virtual 

machine 

based 

isolation + 
Hardware 

Virtual 

Machine  

XEN is a paravirtualized 

virtual machine architecture 

and supports virtual domains 

on top of a thin hypervisor 

layer. Virtual machines 
running on top of XEN 

provide very strong isolation. 

XEN runs drivers within a 

virtual domain which provides 
additional isolation against 

driver faults. 

Paravirtual

ized 

kernels or 

Unmodifie

d kernels 
running on 

HVM 

enabled 

processors 

XEN 

Hypervisor 

XEN Hypervisor 

+ XEN Domain0  

Static 

policies as 

enforced by 

the 

microkernel 
interface 

2003 

13 KVM [53] Hardware 

VM based 

isolation + 

OS based 

isolation 

KVM is an extension to the 

standard Linux kernel to 

provide virtualization using 

hardware VM support. KVM 

supports running standard 
Linux processes as well as 

virtual machines over the 

standard Linux kernel. The 

isolation is provided by the 

hardware and the KVM 
module in the kernel.  

Standard 

OS 

processes 

or virtual 

machines 

KVM Module  

in kernel + 

Linux Kernel 

KVM module  Static 

policies as 

enforced by 

hardware 

virtualization  
+ KVM 

module 

2006 

14 Denali [54] Hypervisor 
VM based 

isolation 

Denali is paravirtualized VM 
architecture. It uses a thin 

hypervisor layer to multiplex 

different VMs' running on top 

of it and provides full isolation 

between the VMs’. The 
applications running on top of 

Denali are compiled with a 

guest OS library which 

provides an abstraction for the 

available resources.  

Virtual 
Machines 

Denali VMM Denali VMM Static 
policies as 

enforced by 

the VMM 

2001 



15 VMware 

Workstation 

[41] 

Hosted VM 

based 

isolation 

Exports a full virtual machine 

as an application level process 

and allows installation of 

complete operating systems in 
the virtual machines. The 

process running the VM is 

completely isolated from the 

regular application processes. 

Complete  

operating 

system 

running in 
the VM 

Virtual 

Machine 

Monitor 

Virtual Machine 

Monitor + Host 

Operating 

System 

Static 

policies as 

enforced by 

the VMM 

late 

1990's 

16 Legba [55] Hardware 

based 

isolation 

Legba is fine-grained memory 

protection architecture that 

enables strong isolation. It 
enables isolation by 

introducing object tagging to 

cache lines and providing 

protected procedure calls.  

OS 

Processes  

 

Legba 

enabled TLB 

architecture 

Hardware + OS 

using the 

hardware features  

Static 

policies as 

implemented 
by the OS 

using the 

hardware 

2003 

17 PeaPod [57] ACL based 

sandboxing  

+ ABI based 
sandboxing 

+Process 

VMs 

Provides two key sandboxing 

abstractions: Process Domain 

(POD) and Process 
Encapsulation and Abstraction 

(PEA).  PODs provide 

applications a virtualized view 

of the underlying OS and 

PEAs use system call 
interposition techniques to 

enforce restrictions on process 

restrictions. Together, the 

POD and PEA provide strong 

isolation between untrusted 
application processes and 

allow fine grained 

specification of policies on a 

per-application basis.  

OS 

Processes 

PeaPod 

Virtualization 

layer 

PeaPod layer + 

OS 

Static fine-

grained 

policies as 
specified in 

configuration 

2007 

18 SVGrid [31] Hypervisor 

based 
Virtual 

machine + 

ACL based 

sandboxing 

SVGrid is a secure virtual grid 

environment to protect grid 
computers filesystem and 

networks from malicious code.   

SVGrid is based on XEN. All 

grid applications are run inside 

a Grid Virtual Machine 
(GVM) and all accesses to 

resources from GVMs are 

redirected to a Monitor Virtual 

Machine where access policies 

are applied.  

XEN VM Monitor 

Virtual 
Machine + 

Xen 

Hypervisor 

(Xen 

Domain0) 

XEN Hypervisor 

+ Monitoring 
VM (domain 0) 

Static access 

policies as 
specified in a 

access file 

2005 

19 Consh[20] ACL based 

sandboxing   
+ ABI based 

sandboxing 

Consh provides a semi-

virtualized view of the 
filesystem and network to an 

application so that untrusted 

applications can run without 

comprising local resources. 

Consh also provides fine-
grained protection to protect 

local system resources.  It is 

based on Janus [12]. 

OS 

Process 

Consh 

Framework  

OS kernel + 

Consh 
Framework 

consisting of 

Janus and 

virtualization 

code 

Static 

policies 
specified in 

configuration 

file 

1998 



20 SubDomain 

[19] 

ACL based 

sandboxing 

SubDomains is a kernel 

extension designed  to provide 

least privilege confinement to 

Untrusted programs. It allows 
an administrator to specify the 

domain of activities the pro- 

gram can perform by listing 

the files the program may 

access.  It also allows 
subprocesses (child processes) 

to be assigned separate 

privileges.  

Processes 

and Sub-

Processes 

(that is 
portions of 

a process)  

Operating 

System 

OS Kernel + 

SubDomain 

Kernel 

Extensions + 
Application code 

calling the 

SubDomains 

APIs 

Static 

Policies as 

specified in 

configuration 
files  

2000 

21 SLIC[25] ABI based 

sandboxing  

SLIC is an extension system 

which uses the technique of 

interposition to insert trusted 

extension code to existing 
operating systems. These 

extensions enable existing 

OSes to provide tighter 

isolation environments for 

executing untrusted binaries.  

Regular 

OS 

processes 

Operating 

System 

SLIC Extensions 

+ Operating 

System 

Static 

policies as 

applied by 

the SLIC 
extension 

layer 

1998 

22 TRON[17] ACL based 

sandboxing 

Process-level discretionary 

access control system. Allows 
users to specify capabilities 

for a process's access to 

individual files and 

directories. The enforcement 

is done by kernel wrappers. 

OS 

Process 

Operating 

System 

OS kernel + 

Application 

Static or 

dynamic. 
Left to the 

discretion of 

the process. 

1995 

23 MAPBox 
[13] 

ABI based 
sandboxing 

Classifies applications into 
classes according to behavior 

and provides pre-configured 

sandboxes for each class. Its 

call interception and policy 

enforcement mechanism are 
similar to Janus [12] 

OS 
Process  

MAPBox 
Framework 

MAPBox 
Framework + 

Operating 

System 

Statically 
specified 

within policy 

files.  

2000 

24 Chakravyuha 
[16] 

ACL based 
sandboxing 

Uses a Resource Capability 
List (RCL) to specify 

permissions and resources 

accessed by untrusted code. 

The RCL is attested by a third 

party. Clients enforce the RCL 
that is received with the code 

thus providing a sandbox 

around the resources 

OS 
processes, 

active data 

like 

applets, 

scripts 

Chakravyuha 
Framework 

Chakravyuha 
Framework on 

client + RCL 

attester +  

Operating 

System 

Statically 
specified 

within RCL 

files  

1997 

25 Alta [8] Process 

Virtual 

Machine 
based 

isolation + 

Language 

based 

isolation 

Alta is an operating system 

supporting nested processes 

within a Java Virtual Machine. 
The language features of java 

along with the VM provide 

isolation.  

Java 

Processes 

Alta 

Operating 

System 

JVM Static 

policies as 

provided by 
the language 

and JVM 

1999 

26 One way 

Isolation [18] 

ACL-based 

sandboxing 

Processes executing under this 

technique are allowed to make 
reads but their writes are 

redirected to a different area. 

This applies to filesystem and 

network. This creates a very 

simple sandbox and prevents 
malicious processes from 

modifying system data. 

OS 

Processes 

Operating 

System 

Operating 

System Kernel + 
Isolation File 

System + Policy 

Enforcement 

Engine 

Static 

policies 

2005 



27 FreeBSD 

Jails [21] 

ACL based 

sandboxing 

FreeBSD Jails allow 

partitioning of the OS into 

virtual environments with 

each environment supporting 
processes, file systems and 

network resources. The jail 

provides a restrictive 

environment for running 

untrusted applications. 

OS 

Processes 

Virtual Jail 

Environment  

Operating 

System kernel 

(with the jail 

extensions) 

Static 

Policies as 

defined by 

standard 
UNIX 

semantics 

2000 

28 Fine grained 

protection 
domains [28] 

ABI based 

sandboxing 

Combines benefits of both 

kernel level and user level 
sandboxes by placing a 

reference monitor in the same 

process address space as the 

sandboxed applications.  The 

protection is provided at 
memory page level. The 

reference monitor intercepts 

system calls made by the 

application and can enforce its 

policies. 

Operating 

System 
Process 

OS Kernel OS Kernel + 

Kernel 
Extensions to 

implement Fine 

Grained 

Protection + OS 

Loader 

Static 

policies 
identified by 

programmer 

2003 

29 Flexibly 

controlling 
downloaded 

executable 

content [26] 

ACL based 

sandboxing 
+ Type 

Systems  

Describes an elaborate 

architecture for controlling 
downloaded executable 

content which provides for 

authentication of remote 

sources, determining access 

control rights based on source 
and application and 

enforcement mechanisms for 

policies.  

Active 

content 
like 

scripts, 

applets and 

operating 

system 
processes 

Content 

Protocol 
Framework 

OS Kernel + 

Trusted Browser 
+ Security 

Managers 

Static 

policies 
specified in 

ACLs 

1996 

30 Deeds [29] ACL based 

sandboxing 

+ Type 
Systems 

Deeds implements a history 

based access control for 

mobile code. It maintains a 
selective history of accesses 

made by programs and uses 

this to discriminate between 

safe and unsafe programs.  

Active 

content 

like 
scripts, 

applets and 

operating 

system 

processes 

Deeds 

Framework 

OS Kernel + 

Deeds 

Framework 

Dynamic 

Policies 

because the 
system 

supposedly 

learns from 

histories and 

adapts its 
policies to 

provide 

security and 

ease of use.  

1998 

31 Perseus [49] Microkernel   

OS based 

isolation + 
hardware 

based 

isolation 

Perseus is a security 

framework for trustworthy 

computing. It is based upon 
the Fiasco microkernel and 

uses services of the trusted 

platform module to guarantee 

security. Isolation is provided 

by the microkernel using 
hardware assisted isolation. 

Paravirtual

ized VM 

or OS 
Processes 

Microkernel 

Secure 

Platform 

Secure Platform 

+ TPM Hardware 

Static 

policies as 

enforced by 
the secure 

platform 

layer 

2001 

 

 

 



6. Observations  

 The taxonomy and the list of surveyed systems present a clear view of the plethora of research that has 
happened in isolation security. There are several observations that can be made about the evolution of isolation.  

Observation 1: The current trend in systems design is to combine many isolation techniques into the complete 
system as can be seen in projects like Singularity [34] and Nizza [35]. This trend is clearly justified because of 
the evolving nature of the threats and threat vectors. It is unlikely that a single isolation technique would be 
capable of preventing all attacks.  

Observation 2: There is a shift towards mandatory access control based systems from discretionary access 
control based systems. This is clearly visible due to the large number of systems that incorporate virtualization 
techniques or hardware-based techniques or language-based techniques. Mandatory access control techniques 
gives little power to the user to subvert a system due to the access mechanisms implicitly built into the system 
during its construction. For example, using type safe compliers like Java automatically removes buffer overflow 
vulnerabilities, using virtualization techniques confines program execution to a completely separate machine and 
thus is inherently stronger than basic protections provided by a process.  

Observation 3: All systems allow some way of specifying static policies for the system. In some cases like 
language-based systems, the policies are very implicit while in other cases like the sandboxing-based systems the 
policies are explicitly specified. A system or a technique is more prone to configuration errors when it is 
explicitly configurable because it requires an intricate understanding of the policies and their dependencies.  We, 
thus, also need systems that learn policies dynamically from the environment in which they are operating.  

Observation 4: There is a growing trend towards using virtualization to provide isolation security. We believe 
that this is due to the fact that virtual machines provide an easy and fast way to configure a very secure 
environment. Virtual machines provide an easy way to securely wrap (in an attempt to contain) existing 
applications.  

Observation 5: In spite of the work done for isolation in individual systems, there has been little work done for 
isolation in networked systems. We only found one system, Secure Virtual Enclaves [52], which implemented 
minimal isolation over a network. For reasons mentioned in section 2 of this paper, isolation in networked 
systems is becoming a very important challenge today. Networked systems today provide an easy infrastructure 
for supporting the notion of Virtual Systems [1]. Such virtual systems if deployed would require isolation 
mechanisms beyond those that are used for individual systems.  

7. Summary 

 We have introduced taxonomy for isolation techniques in individual systems. The taxonomy comprises five 
major categories: language-based, sandbox-based, VM-based, OS kernel-based and hardware-based. A survey of 
31 systems was presented with respect to the taxonomy. We note that the current trend in systems is to use a 
composition of techniques instead of relying on one technique. Virtualization has been adopted by the systems 
community as the technique of choice for providing isolation. There is very little work on isolation in networked 
systems. Next-generation systems must build in isolation as a requirement and not as an option.  
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