

A survey of isolation techniques

Draft Copy
Arun Viswanathan and B.C. Neuman

University of Southern California, Information Sciences Institute

Abstract

 The general purpose computer has become pervasive and is supporting an increasing number of functions,

including music, video, gaming, communications, banking, business, process control, and critical in frastructure. The use of

a single computer for mult iple functions, and the interconnection of mult iple computers through a common network have

reduced the isolation that protected such functions in the past. If we are to use common systems for multip le functions, we

need mechanis ms that provide the isolation needed to protect each function from interference by others. Without such

isolation, vulnerabilities and mis-trust in any part of the system can propagate and compromise the rest of the system.

Isolation techniques form an integral part of security in systems and networks. This work surveys isolation techniques for

operating systems and networks and describes systems built using those techniques. An intuitive taxonomy is proposed for

organizing these techniques. The paper aims to provide a crit ical understanding of what already exists and what needs to be

done with respect to isolation security for building next-generation secure systems.

1. Introduction

 The unprecedented growth of the network-enabled personal computer in a variety of form-factors,
including the laptop, desktop, mobile, handheld devices, when combined with the increase importance of the
internet has changed the dynamics of security. Computers which were once used only for number-crunching and
electronic data storage are now used for functions not previously envisioned. Among these functions are music,
video, gaming, communications, banking, business, process control, and critical infrastructure.

 Unfortunately, this increased importance of the network-enabled personal computer has enabled new
mechanisms for attack through the easy propagation of malware

1
. Malware works on the premise that infecting

one part of the system gives easy access to other parts of the system and in most cases access to the network too.
As computers have become more connected to one another, the malware threat has increased. It is essential that
instead of just relying on defense techniques, the next generation of system software must be designed from the
ground-up to provide stronger isolation of functions. As an example, consider the case of an employee logging
remotely into a corporate network. If his system is infected with viruses introduced by malicious online games
he may have played, the infection can now easily spread into the employees’ corporate network. Thus, isolation
becomes an essential building block for providing security in today’s systems and networks. One must note here
that use of isolation as a building block is not limited to only security but finds uses in other areas of software
engineering like providing failure isolation for components, component modularity, improving system structure
and easing system evolution. This work focuses primarily on using isolation for security.

 The need for isolation is not a new requirement in Computer Security. It was articulated clearly almost
35 years ago in Computer Security Technology Planning Study Report [1] by James Anderson, much before the
advent of the Internet and the widespread proliferation of personal computers. The report identifies that resource-
sharing between users is the key cause of security and privacy issues and that execution of programs must be
controlled to build a secure resource sharing system. The notion of a Reference Monitor was then proposed as a
building block for designing a secure resource sharing system. As defined in [1], the function of the Reference
Monitor is to validate all references (to programs, data, peripherals etc) made by programs in execution against
those authorized for the subject (user, etc). The Reference Monitor is also responsible for assuring that the
references to shared resource objects are of the right kind (read, read/write etc). It can be argued that most of the
isolation research presented in this paper is some variation on the generic concept of a reference monitor.

1 The term malware in this paper is used to refer to all types of existing bad software including worms, v iruses, rootkits,

Trojans, spyware etc.

 In current operating systems, the notion of isolation of functions is supported at a minimum by operating
system processes. The operating system kernel provides this isolation by using abstractions of virtual memory
provided by the hardware. This simple isolation has proven extremely inadequate in dealing with the various
penetration techniques used by malware which allow an adversary to access resources otherwise not meant to be
accessed by a process. Research over the years has focused on providing the necessary isolation for mitigation of
these issues. The well-known mitigation techniques include language-based protection provided by type-safe
languages and certifying compilers, sandboxing-based protection as provided by different kinds of reference
monitors, kernel-based protections, hardware-based protection and the more recently popularized hypervisor-
based protection. This paper surveys the currently employed isolation techniques and proposes an intuitive
taxonomy to organize the techniques. Around thirty different systems which implement those techniques (single
or a combination of techniques) are then analyzed and categorized as per the taxonomy.

 Unfortunately, techniques that have been very useful in improving the security of individual computer
systems do not extend very well into the network environment. Controls on the flow of information within an
operating system are easily circumvented when a process communicates unconstrained with processes outside
the local system. Most of the current techniques treat the system in isolation and do not really concern
themselves with the network aspect. But, in the face of emerging threats as outlined above, entities involved in a
transaction over a distributed network require stronger guarantees of isolation than currently provided.

 The paper aims to provide a critical understanding of what already exists and identify new challenges in
isolation mechanisms for building next-generation secure systems. To that end, this paper serves as a
bibliography of isolation techniques and should provide a single reference point for researchers in this area. The
rest of the paper is structured as follows: Section 2 introduces required terminology and formulates the isolation
problem in a generic way. Sections 3 and 4 present taxonomy for categorizing the isolation techniques. Section 5
provides a brief description of systems built using isolation techniques. Section 6 presents observations made
using the survey and Section 7 concludes the paper.

2. The isolation problem

 This section introduces a generic model for isolation in systems. Two examples are presented to highlight the
necessity of isolation in individual systems and networked systems. The terminology introduced below is then
used to compare the systems that are described in section 4.

2.1 Terminology

Task - A task is an abstraction for a piece of software that consumes resources to perform a specific function.
Examples of tasks can be any piece of software such as web browsers and FTP server.

Shared Resource - A shared resource is at least one of a CPU, storage, or a network. Tasks perform their
functions by sharing resources with other tasks. While sharing of resources helps in efficient utilization of
resources, it is also one of the root causes of security issues.

Protection Domain - A Protection Domain is a logical container for task(s) and shared resources. The protection
domain enforces the protection boundary policies using isolation techniques. An example of a protection domain
is an operating system which allows multiple tasks to run while competing for CPU/Memory/Network resources
or a virtual system [1] which abstracts resources from one or more systems and presents them as if part of a
single system.

Trusted Computing Base (TCB) – As defined by Lampson [2], TCB is a small amount of software and
hardware that security depends on and that we distinguish from a much larger amount that can misbehave
without affecting security.

 With the above definitions in mind we can define the task isolation problem as, the problem of separating

and protecting tasks from other executing tasks within a protection domain and from tasks in other protection
domains.

 Illustration 1 provides a visualization of the terms just described. The tasks are represented by ovals and they
run within protection domains. The protection domains enforce policies on the running tasks. The thickness of
the protection domains implies the extent to which the TCB is required to enforce the protection domain. The
isolation model also allows for recursive protection domains, that is, there could be protection domains within
protection domains as shown in the figure.

2.2 Examples of protection domains

 Consider an operating system (see illustration. 2) to be a protection domain comprising different tasks. The
isolation problem for the OS is to provide separation between the tasks running on the same node and also
prevent other outside tasks from inadvertently accessing tasks in its domain.

Illustration 2: Example of a local
protection domain. The browser, word

software and the kernel functions are all
part of same protection domain.

Illustration1: Isolation Model

 Consider the distributed case (see illustration. 2), in which a user logs into his company network over VPN
to access documents for editing. In this case, the protection domain comprises the companies file server, the
user’s VPN client and the user’s word processing software. The protection domain policies should protect the
tasks from each other and also prevent any unidentified task (like the browser in the example) from entering this
virtual system and also prevents anything from within the domain from making illegal accesses outside the
system. It is easy to see here that more is required of the TCB in the distributed case than in the single case.

3. Taxonomy of isolation techniques

 As seen in section 2, there are two types of systems for which isolation can be defined: individual and
networked. The distinction between individual systems and networked systems is important because the threat
model is different in both cases and hence the isolation requirements change. Also, the TCB in a networked
system is distributed and hence the isolation mechanism has to take into account the trustworthiness of the TCBs
in the system. Though this is well understood, it is surprising to note the little attention that isolation in
networked systems has received as compared to the plethora of work done in individual systems. Current
techniques for providing isolation in networked systems rely mostly on encrypting the traffic flowing on the
network. But, as the example in section 2 shows, this does not necessarily solve the isolation problem. This
point is explored further in section 6. As there is not much reported work on isolation in networked systems, the
taxonomy presented here in this section applies only to individual systems. Illustration 3 provides a visual of the
taxonomy.

 Isolation techniques for individual systems can be categorized as follows: (1) Language-based isolation (2)
Sandbox-based isolation (3) Virtual Machine based isolation (4) OS-kernel based isolation and (5) Hardware-
based isolation. Individual sections explore the categories further. The individual categories are explored further
below.

3.1 Language-based Isolation

Language-based isolation is isolation provided by programming languages, language compilers, assemblers
and/or by runtime environments. They essentially force the programmer to comply with a set of rules that

Illustration 3: Networked Protection Domain

enforce isolation between the program and other programs. For example, type-safe programming languages,
such as Modula, Scheme, or Java, ensure that operations are only applied to appropriate values. As stated in [3],
they do so by guaranteeing that programs can only access appropriate memory locations and that control
transfers happen to appropriate program points.

 Language based isolation can be further classified into two categories based on how it is enforced:

(a) Type Systems: Type-systems enforce isolation using either programming language semantics,
compilers, run-time systems or a combination of the above. They make sure that programs can access
only appropriate memory locations and that control transfers happen only to appropriate program points.
Examples of type systems are programming languages like ML, Scheme, Modula-3, Java. Isolation
boundaries are usually enforced using a combination of compile-time and run-time techniques.

As stated in [3], the key idea in type systems to enforce security policies is to shift the burden of proving
that a program complies with a policy from the code recipient (the end user) to the code producer (the
programmer). The programmer is forced to write the program in conformance with the type system; the
end user need only type-check the code to ensure that it is safe to execute. Type-systems thus provide a
lightweight way to enforce memory and control safety as opposed to the traditional ways of enforcing
isolation using OS/hardware protection mechanisms like page-tables/segmentation etc.

Example Systems: SPIN, Modula-3, ML, Scheme, Java

(b) Certifying Compilers: As defined in [3], a certifying compiler is a compiler that, when given source
code satisfying a particular security policy, not only produces object code but also produces a
certificate—machine-checkable evidence that the object code respects the policy. A widely-used example
is the javac compiler for Java which produces annotated byte-code from a high-level Java program. The
annotated code (in JVML) becomes the certificate for the high-level code. This certificate is then used
by a verifier to verify the type-safety of the byte-code.

In general, certifying compilers allow for a very versatile way of specifying security policies as
compared to simple type-safety notions provided by programming languages. Javac compiler, TAL
(Typed Assembly language) and PCC (Proof Carrying Code) are examples of certifying compiler
approaches. TAL [5] or Typed Assembly Language extends the notion of JVML byte-code to machine
language of real machines. As stated in [5], the basic idea behind TAL is to encode high-level typing
abstractions and security policies from high-level language constructs to typed machine language. The
obvious advantages of doing so are that it removes the dependence on virtual machines, high level
languages and aids faster execution on the native platform. But, TAL still can only enforce the traditional
type-safe security policies.

The most widely recognized example of Certifying Compilers is PCC [4] or Proof-Carrying Code. PCC
[4] uses formal proofs represented in a meta-language to represent the safety and correctness
requirements of code. The code-receiver on the other end uses a theorem-prover to validate the proof
attached with the code. The TCB in PCC is very small and it does not impose run-time penalties. A big
advantage of using PCC is that it has a very expressive logic to construct desired policies and thus is
more powerful than simple type-safety.

 Examples: Proof Carrying Code [4], TAL [5]

3.2 Sandbox based isolation

 Sandboxing was first introduced by Wahbe et.al.[14] and was defined by them as a technique for software

encapsulation of untrusted code such that it may not escape its fault domain
2
. Their technique involved

modifying the program binary to insert additional checks around each store or jump so that the program could
only make jumps into its own code segment and write to data only in its data segments. The definition of
sandboxing as adopted in this paper is not restricted to the definition presented in [14] but instead is defined
more generically as “a technique for creating confined execution environments for running untrusted programs
on the same machine” A simple example of a sandbox is the UNIX chroot jail which is a very simple way to
provide remote users a restricted and virtual view of the file system.

 There are three techniques that may be used to implement sandboxes based on how a program's activity may
be restricted. One can use the simple technique of applying access controls like file ACLs/user ACLs to restrict
activity or restrict behavior at the instruction level or at the system call level. It is easy to see that each level of
monitoring has its own advantages and disadvantages and they all help protect against specific threats. Based on
the above three techniques, sandbox-based isolation can be further classified as:

(a) Instruction Set Architecture based (ISA based): Any sandbox technique that restricts activity of
programs at the instruction level falls under this category. One of easiest ways in which this type of
sandboxing is implemented is by binary rewriting where additional instructions are added before
existing code (esp. jumps and stores) to check for memory access violations. One of the problems with
this technique is that it is architecture dependent and more so it may also be dependent on the type of the
instruction set (RISC or CISC). Earlier techniques in Software Fault Isolation (SFI) suffered from being
only RISC capable but recent projects like PittSFIeld [15] have shown that SFI can be applied to CISC
architectures too.

Examples: SFI [14], Program Shepherding [10], Inline Reference Monitors [58], PittSFIeld [15].

(b) Application Binary Interface based (ABI based): The ABI is the interface between an application
program and the operating system or between the application and its libraries. In this technique, a
sandbox is constructed by controlling the ABIs that an application uses to restrict its behavior. A
common way of specifying restricted ABIs for an application is via a configuration file.

Examples: Janus [12], MAPBox [13], Consh [20], SLIC [25]

(c) Access control based (ACL based): In access control based sandboxing, the restriction of activity is
provided via explicit permissions that are applied to accesses by programs. In this class, the access
control can be applied to files, network, processes, pipes, devices etc. UNIX chroot is the simplest
example of this type of sandboxing, where the remote users’ view of file system is constricted to a
directory by controlling accesses to other directories in the file system. The difference between ACL-
based and ABI-based sandboxing is that the ABI-based sandboxing relies only on preventing system
calls while the ACL-based method is a little more generic in its applications. Another subtle difference
is the fact that in ACL-based systems, the system calls may themselves be modified to implement
policies while in ABI-based systems the system calls are prevented from executing.

Examples: UNIX Chroot-jail, TRON [17], Sub-Operating Systems [15], SubDomains [21], Consh [20],
FreeBSD Jails [21], Chakravyuha [16], SBOX [22], One Way Isolation [18]

3.3 Virtual Machine based isolation

 Virtual Machines in the simplest sense are software abstractions of real machines. They provide a virtual
platform for running tasks. Virtual machines have been employed to provide various features like emulation,
optimization, translation, isolation, replication etc [36]. This paper will only consider virtual machines from an
isolation perspective. As defined in [36], a virtual machine can support individual processes or a complete

2
 Fault Domains as defined in [14] are logically separate portions of an applications address space.

system depending on the abstraction level where virtualization occurs. Some VMs support flexible hardware
usage and software isolation, while others translate from one instruction set to another. Based on this
observation we can classify Virtual Machine based isolation into 4 categories as:

(a) Process Virtual Machines: Process Virtual Machines support individual processes or a group of
processes and enforce isolation between the processes and operating system environment. Process
virtual machines can run processes compiled for the same ISA

3
 or for a different ISA as long as the

virtual machine runtime supports the translation. Isolation policies are provided by a runtime
component which runs the processes under its control. Isolation is guaranteed because the virtual
machine runtime does not allow direct access to the resources that the underlying real system provides.
Earlier process virtual machines like the Java Virtual Environment (JVM) supported only single
processes but research projects like Alta [8] have made it possible to run multiple processes within the
same virtual machine. Similarly, dynamic binary optimizers like DynamoRIO [11] which have been
extended to provide isolation also fall under this category.

Examples: DynamoRIO with Program Shepherding extensions [10], Java VM [39], MS Common
language runtime [40], Alta [8], PeaPod [57].

(b) System Virtual Machines (Hypervisor Virtual Machines): System virtual machines provide a full
replica of the underlying platform and thus enable complete operating systems to be run within it. The
virtual machine monitor (also called the hypervisor) runs at the highest privilege level and divides the
platforms hardware resources amongst multiple replicated guest systems. All accesses by the guest
systems to the underlying hardware resources are then mediated by the virtual machine monitor. This
mediation provides the necessary isolation between the virtual machines. System virtual machines can
be implemented in a pure-isolation mode [36] in which the virtual systems do not share any resources
between themselves or in a sharing-mode in which the VM Monitor multiplexes resources between the
machines. Pure-isolation mode virtual machines are as good as separate physical machines. Examples of
such systems are the IBM's PR/SM system [37]. Such systems, though highly secure, are not practical
for desktop-like environments. Systems like XEN [51] and KVM [53] have commercialized the sharing
hypervisor approach in desktop operating systems.

 Examples: XEN [51], sHYPE [56], PR/SM [37], Terra [33], Nizza [35], Nexus [32], SVGrid [31],
VMware GSX Server [41]

(c) Hosted Virtual Machines: Hosted Virtual Machines are built on top of an existing operating system
called the host. The virtualization layer sits above the regular operating system and makes the virtual
machine look like an application process. One can then install complete operating systems called guest
operating systems within the host virtual machines. The VM can provide the same instruction set
architecture as the host platform or it may also support a completely different instruction set architecture
(ISA), like running Windows IA-32 OS on a Mac running on the PowerPC platform. VMware GSX
Server is an example where the host ISA and guest ISA are same. Isolation in hosted virtual machines is
as good as the isolation provided by the hypervisor approach except that the Virtual Machine Monitor in
the case of the hosted VM does not run at the highest privilege. The processes running inside the Virtual
machine cannot affect the operation of processes outside the virtual machine. System emulators are also
loosely classified under hosted virtual machines [refer section 4.3].

Examples: VMWare Workstation[], Microsoft Virtual PC, Qemu [48], Simics [59]

(d) Hardware Virtual Machines: Hardware virtual machines are virtual machines built using virtualization
primitives provided by the hardware like processor or I/O. The advantage of hardware level
virtualization is tremendous performance improvements over the software based approaches and
guarantees better isolation between machines. The isolation provided by the hardware assisted

3 ISA stands for Instruction Set Architecture. Examples are x86, PPC etc.

virtualization is more secure than that provided by its software counterpart for obvious reasons. This
form of virtualization has been exploited in KVM [53] which is based on the virtualization instruction
set of the Intel VT-x [60] and AMD-V processors.

Examples: Intel VT-x [59], AMD-V, KVM [53]

3.4 OS-kernel based isolation

 OS-Kernel based isolation is the most traditional form of isolation. The operating system kernel has been
always regarded as the most trusted component in the system and is thus entrusted with enforcing policies that
are required for isolation between applications and between applications and the kernel. For a long time, the
isolation guaranteed by the operating system's notion of 'process' was the only isolation that was provided in
most mainstream operating systems.

 Much research has focused on reducing the size of the kernel because a large kernel implies a larger TCB
and hence a larger set of security problems. These efforts have resulted in the Microkernel [42] and Exokernel
[43] based operating system kernels as opposed to the traditional monolithic kernels. While the design
philosophy may differ between the types of the kernels, the core requirement of being a secure resource manager
is still satisfied by all the types. That is, all kernels account for resources used by the processes, tasks or domain
and guarantees isolation between them. Monolithic kernels provide an isolation guarantee by using the Memory
Management Unit (MMU) of the processor while the Exokernel provide it by implementing fine access controls
on the resource accesses by the applications.

 The various kernels differ in their design and their requirements but all of them provide the basic isolation
between the applications running on top of them. Thus, this category of operating systems is not further
subdivided into the various types of kernels. Instead, the different kernels are the examples of this category.

Examples: Monolithic Kernels, Mach Microkernel [42], Exokernel [43], Hypervisors [51], Singularity [34],
Perseus [49]

3.5 Hardware-based isolation

 Isolation guaranteed by way of hardware controls is hardware-based isolation. This is the strongest form of
isolation as it is not easily circumvented by software at runtime. This form of isolation is provided either by the
processor or by special devices which work in conjunction with the processor. Most of the processors provide a
Memory Management Unit (MMU) which helps in assigning different virtual spaces to different processes and
thus provides isolation between them. Similarly, IOMMUs, IO Memory Management Units, are hardware
devices that translate a device DMA addresses to physical addresses. As stated in [45] , an isolation capable
IOMMU restricts a device so that it can only access parts of memory it has been explicitly granted access to.
IOMMUs increase system availability and reliability by preventing malicious devices from performing arbitrary
DMAs. As stated in [45] [46], operating systems can utilize IOMMUs to isolate device drivers; hypervisors
utilize IOMMUs to grant secure direct hardware access to virtual machines. ARM TrustZone [47], and Legba
[55] are two other examples in this category.

Examples: MMU, Calgary IOMMU [45], DART IOMMU [46], ARM TrustZone [47], Legba [55]

Illustration 1: Taxonomy of isolation techniques

4. A note on the taxonomy

 The taxonomy has a few categories which seem to overlap in their definitions. But there are few subtle
differences which justify their separate existence. This section describes the subtle differences which distinguish
the categories in the taxonomy.

4.1 Hypervisors vs. OS kernels

 At first glance, hypervisors or virtual machine monitors don't look any different than OS-kernels. They
especially bear a striking similarity to the concept of microkernels. As suggested in [47], VMMs were born out
of a necessity to improve system utilization by facilitating time-sharing of machines. The time-sharing aspect
also meant that multiple users may own different virtual machines and thus strong isolation guarantees were
essential. Microkernels on the other hand were born out of a desire to create small OS kernels which would
enable easier validation and porting. Other kernels like Exokernel [43] were born out of the need to enable
application level resource control. Thus, as far as the isolation problem is concerned, the VMM or the hypervisor
is the only technique that handled the isolation problem. Other kernels also provide isolation, but it is not their
major requirement as it is for the hypervisor. It was thus deemed inappropriate to classify hypervisors as just
another kernel.

4.2 Virtual Machines vs. Sandboxes

 Virtual machines have been loosely referred to as sandboxes in some literature. They can be loosely referred
to as sandboxes as they provide a confined execution environment. But the striking difference between the
sandbox category presented in the taxonomy and the virtual machines is that the sandbox provides a confined
execution for untrusted code on the same machine. Virtual machines provide a completely different machine
(albeit a virtual machine) for code to execute. Thus, even though they provide a confined execution environment,
they are stronger in their isolation guarantees than simple sandbox techniques. Sandboxes are essentially
additional patches on top of existing systems to separate trusted and untrusted code.

4.3 Where do System Emulators fit?

 System emulators provide a complete software emulated processor. Traditional emulators execute every
instruction in software and thus are very slow in their performance. They have nevertheless been used
extensively for system testing, debugging and educational purposes. The main difference between a VMM and
an emulator is that a VMM executes all the instructions directly on the underlying hardware instead of
emulating. Thus VMMs are more practical techniques of isolation. Recently emulators like Simics [59] and
Qemu [48] have started supporting a virtualized mode of execution where they try to behave like a VMM instead
of a full system emulator. System emulators can thus be considered to be a part of Hosted Virtual Machines.

5. Survey of systems

 This section surveys and categorizes 31 systems built using the above techniques or a combination of above
techniques to provide isolation in various environments. There is a bias towards considering the security aspects
of the system and other features are intentionally omitted. A tabular format is chosen over a more verbose
format as the number of systems is very large. The tabular format gives a quick overview of the critical features
of each system and provides pointers for further exploration.

 For each surveyed system, the isolation mechanisms are listed as per the taxonomy along with a brief
description. Systems are compared as per the terminology developed in Section 2. The column 'Tasks' lists the
tasks that are being protected or protected from in the system. 'Protection Domain' (aka the container of tasks and
resources) is the outermost protection boundary that is implemented by the system. Note that recursive
protection domains are not mentioned. 'TCB' comprises of the minimal set of trusted components on which the
security of the system relies. 'Policies' list the policy mechanism of the system. 'Year published' notes the year of
publication of the paper describing the system.

Table of Systems

System Isolation
Mechanism

Used

Brief Description Tasks Protection
Domain

(Container)

TCB Policies Year
Pub.

1 SPIN [6] Type

System

Uses language features of

Modula-3 to enforce

boundaries and ensure

isolation between code.

Kernel

Extensions

OS OS Core Services

of memory and

processor +

External Modula-

3 Type Checker

Static

policies

enforced by

language type

safety

1995

2 j-Kernel [7] Type

System +
certifying

compiler +

Microkernel

Uses language features of java

to provide multiple protection
domains over a single JVM.

Sharing between tasks is

enabled by sharing capability

objects.

Java

Programs,
Servlets

Java Virtual

Machine

JVM + j-kernel

library + Java
interpreter and

compiler

Static

policies
enforced by

the language

+ policies

specified by
programmer

1998

3 Program
Shepherding

[10]

ISA-based
sandboxing

Monitors control flow
transfers in a process

dynamically to enforce

security policies. Existing

process binaries do not require

any changes.

OS
Process

RIO
Framework

RIO framework
+ Operating

System

Statically
specified

within a

policy file

2002

4 Janus [12] ABI-based

sandboxing

Monitors system call activity

and applies policy restrictions
to prevent execution of

dangerous system calls.

OS

Process

JANUS

Framework

Janus Framework

+ Operating
System

Statically

specified
within a

policy file

1996

5 Sub

Operating

Systems [15]

ACL-based

sandboxing

Tags each active data object

like JavaScript, word files etc.

with a different use rid to

implement finer permissions
on an object basis. This

effectively creates a sandbox

for active content.

OS

Process

Operating

System

Operating

System + SubOS

extensions in

application.

Static or

dynamic.

Depends on

how the
application

chooses to

implement.

2000

6 PittSFIeld

[30]

ISA-based

sandboxing

PittSFIeld enforces security

policies in CISC architectures

by constraining memory

accesses and control flow in
untrusted binary code. The

idea is to make sure that data

and code accesses are all in

safe regions.

OS

Process

OS process

with a

reference

monitor

Operating

System + Binary

Rewriter

Static

policies as

defined in the

binary
rewriter

2006

7 Terra [33] Hypervisor

Virtual

Machine
based

Terra is a flexible architecture

for Trusted Computing which

allows applications with
varying security requirements

to run simultaneously. Terra

uses a Trusted Virtual

Machine Monitor, a

hypervisor, to partition the
platform into multiple isolated

virtual machines. All

applications are thus

completely isolated.

Virtual

Machines

Terra

Hypervisor

Framework

Trusted Virtual

Machine Monitor

+ TPM hardware

Static

policies as

enforced by
hypervisor

2003

8 Nexus [32] Microkernel

- based +

Processor
based

hardware

isolation

Nexus is a trustworthy OS

design which uses the Trusted

Platform Module for
trustworthy computing.

Applications are run in

isolated protected domains

and secure memory regions

are provided for storing
sensitive data.

Isolated

Protection

Domains

Microkernel

Operating

System

Microkernel +

TPM Hardware

Decentralized

, credentials-

based
authorization

using the

Nexus

Authorization

Logic, which
encompasses

certificates

attesting to

provenance
analysis, or

rewriting as a

bases to trust

a components

claims and
requests.

2006

9 Singularity
[34]

Type
Systems +

Certifying

Compilers +

Microkernel

Singularity is a microkernel-
based OS which uses language

features to provide memory

safety and does not depend on

hardware MMUs. The basic

unit of isolation in singularity
is called SIP (Software

Isolated Process) which uses

type and memory safety

features of Sing# to create

closed and verifiable spaces
for code. The communication

between SIPs happens via

contract channels.

Software
Isolated

Processes

(SIPs)

Singularity
Kernel

Singularity
Kernel + Sing#

Language

Compilers +

Runtime

Static
policies as

offered by

type-safe

sing# and the

singularity
kernel

2007

10 Nizza [35] Microkernel

based

isolation +

Sharing
Virtual

Machine

Based

Isolation +

Language
based

isolation

Nizza is a secure system

architecture that promises a

smaller TCB. Nizza supports

legacy applications by way of
language based VM's or

paravirtualized VMs or

platform emulating VMs.

Isolation is Nizza is provided

by a lightweight L4
microkernel. The kernel

provides fine-grained

protection between the

domains.

Either a

language

based VM

or a
paravirtual

ized VM

or a

platform

emulating
VM

L4

Microkernel

Fiasco (L4)

Microkernel +

Secure Platform

Layer (Loader +
Trusted GUI etc)

Static

policies as

enforced by

the
microkernel

interface

2005

11 Secure

Virtual

Enclaves [52]

ACL-based

sandboxing

(but over a
network)

A secure virtual enclave is a

collaboration infrastructure

which allows multiple
organizations to share

information with each other

but still maintaining local

administrative control over

their own data. SVE extends
ACL based sandboxing over a

network.

Operating

System

Processes

SVE

Middleware

SVE Middleware

+ Operating

Systems

Static

policies

specified in
different

enclaves

2000

12 XEN on

HVM

processors

[51]

Hypervisor

virtual

machine

based

isolation +
Hardware

Virtual

Machine

XEN is a paravirtualized

virtual machine architecture

and supports virtual domains

on top of a thin hypervisor

layer. Virtual machines
running on top of XEN

provide very strong isolation.

XEN runs drivers within a

virtual domain which provides
additional isolation against

driver faults.

Paravirtual

ized

kernels or

Unmodifie

d kernels
running on

HVM

enabled

processors

XEN

Hypervisor

XEN Hypervisor

+ XEN Domain0

Static

policies as

enforced by

the

microkernel
interface

2003

13 KVM [53] Hardware

VM based

isolation +

OS based

isolation

KVM is an extension to the

standard Linux kernel to

provide virtualization using

hardware VM support. KVM

supports running standard
Linux processes as well as

virtual machines over the

standard Linux kernel. The

isolation is provided by the

hardware and the KVM
module in the kernel.

Standard

OS

processes

or virtual

machines

KVM Module

in kernel +

Linux Kernel

KVM module Static

policies as

enforced by

hardware

virtualization
+ KVM

module

2006

14 Denali [54] Hypervisor
VM based

isolation

Denali is paravirtualized VM
architecture. It uses a thin

hypervisor layer to multiplex

different VMs' running on top

of it and provides full isolation

between the VMs’. The
applications running on top of

Denali are compiled with a

guest OS library which

provides an abstraction for the

available resources.

Virtual
Machines

Denali VMM Denali VMM Static
policies as

enforced by

the VMM

2001

15 VMware

Workstation

[41]

Hosted VM

based

isolation

Exports a full virtual machine

as an application level process

and allows installation of

complete operating systems in
the virtual machines. The

process running the VM is

completely isolated from the

regular application processes.

Complete

operating

system

running in
the VM

Virtual

Machine

Monitor

Virtual Machine

Monitor + Host

Operating

System

Static

policies as

enforced by

the VMM

late

1990's

16 Legba [55] Hardware

based

isolation

Legba is fine-grained memory

protection architecture that

enables strong isolation. It
enables isolation by

introducing object tagging to

cache lines and providing

protected procedure calls.

OS

Processes

Legba

enabled TLB

architecture

Hardware + OS

using the

hardware features

Static

policies as

implemented
by the OS

using the

hardware

2003

17 PeaPod [57] ACL based

sandboxing

+ ABI based
sandboxing

+Process

VMs

Provides two key sandboxing

abstractions: Process Domain

(POD) and Process
Encapsulation and Abstraction

(PEA). PODs provide

applications a virtualized view

of the underlying OS and

PEAs use system call
interposition techniques to

enforce restrictions on process

restrictions. Together, the

POD and PEA provide strong

isolation between untrusted
application processes and

allow fine grained

specification of policies on a

per-application basis.

OS

Processes

PeaPod

Virtualization

layer

PeaPod layer +

OS

Static fine-

grained

policies as
specified in

configuration

2007

18 SVGrid [31] Hypervisor

based
Virtual

machine +

ACL based

sandboxing

SVGrid is a secure virtual grid

environment to protect grid
computers filesystem and

networks from malicious code.

SVGrid is based on XEN. All

grid applications are run inside

a Grid Virtual Machine
(GVM) and all accesses to

resources from GVMs are

redirected to a Monitor Virtual

Machine where access policies

are applied.

XEN VM Monitor

Virtual
Machine +

Xen

Hypervisor

(Xen

Domain0)

XEN Hypervisor

+ Monitoring
VM (domain 0)

Static access

policies as
specified in a

access file

2005

19 Consh[20] ACL based

sandboxing
+ ABI based

sandboxing

Consh provides a semi-

virtualized view of the
filesystem and network to an

application so that untrusted

applications can run without

comprising local resources.

Consh also provides fine-
grained protection to protect

local system resources. It is

based on Janus [12].

OS

Process

Consh

Framework

OS kernel +

Consh
Framework

consisting of

Janus and

virtualization

code

Static

policies
specified in

configuration

file

1998

20 SubDomain

[19]

ACL based

sandboxing

SubDomains is a kernel

extension designed to provide

least privilege confinement to

Untrusted programs. It allows
an administrator to specify the

domain of activities the pro-

gram can perform by listing

the files the program may

access. It also allows
subprocesses (child processes)

to be assigned separate

privileges.

Processes

and Sub-

Processes

(that is
portions of

a process)

Operating

System

OS Kernel +

SubDomain

Kernel

Extensions +
Application code

calling the

SubDomains

APIs

Static

Policies as

specified in

configuration
files

2000

21 SLIC[25] ABI based

sandboxing

SLIC is an extension system

which uses the technique of

interposition to insert trusted

extension code to existing
operating systems. These

extensions enable existing

OSes to provide tighter

isolation environments for

executing untrusted binaries.

Regular

OS

processes

Operating

System

SLIC Extensions

+ Operating

System

Static

policies as

applied by

the SLIC
extension

layer

1998

22 TRON[17] ACL based

sandboxing

Process-level discretionary

access control system. Allows
users to specify capabilities

for a process's access to

individual files and

directories. The enforcement

is done by kernel wrappers.

OS

Process

Operating

System

OS kernel +

Application

Static or

dynamic.
Left to the

discretion of

the process.

1995

23 MAPBox
[13]

ABI based
sandboxing

Classifies applications into
classes according to behavior

and provides pre-configured

sandboxes for each class. Its

call interception and policy

enforcement mechanism are
similar to Janus [12]

OS
Process

MAPBox
Framework

MAPBox
Framework +

Operating

System

Statically
specified

within policy

files.

2000

24 Chakravyuha
[16]

ACL based
sandboxing

Uses a Resource Capability
List (RCL) to specify

permissions and resources

accessed by untrusted code.

The RCL is attested by a third

party. Clients enforce the RCL
that is received with the code

thus providing a sandbox

around the resources

OS
processes,

active data

like

applets,

scripts

Chakravyuha
Framework

Chakravyuha
Framework on

client + RCL

attester +

Operating

System

Statically
specified

within RCL

files

1997

25 Alta [8] Process

Virtual

Machine
based

isolation +

Language

based

isolation

Alta is an operating system

supporting nested processes

within a Java Virtual Machine.
The language features of java

along with the VM provide

isolation.

Java

Processes

Alta

Operating

System

JVM Static

policies as

provided by
the language

and JVM

1999

26 One way

Isolation [18]

ACL-based

sandboxing

Processes executing under this

technique are allowed to make
reads but their writes are

redirected to a different area.

This applies to filesystem and

network. This creates a very

simple sandbox and prevents
malicious processes from

modifying system data.

OS

Processes

Operating

System

Operating

System Kernel +
Isolation File

System + Policy

Enforcement

Engine

Static

policies

2005

27 FreeBSD

Jails [21]

ACL based

sandboxing

FreeBSD Jails allow

partitioning of the OS into

virtual environments with

each environment supporting
processes, file systems and

network resources. The jail

provides a restrictive

environment for running

untrusted applications.

OS

Processes

Virtual Jail

Environment

Operating

System kernel

(with the jail

extensions)

Static

Policies as

defined by

standard
UNIX

semantics

2000

28 Fine grained

protection
domains [28]

ABI based

sandboxing

Combines benefits of both

kernel level and user level
sandboxes by placing a

reference monitor in the same

process address space as the

sandboxed applications. The

protection is provided at
memory page level. The

reference monitor intercepts

system calls made by the

application and can enforce its

policies.

Operating

System
Process

OS Kernel OS Kernel +

Kernel
Extensions to

implement Fine

Grained

Protection + OS

Loader

Static

policies
identified by

programmer

2003

29 Flexibly

controlling
downloaded

executable

content [26]

ACL based

sandboxing
+ Type

Systems

Describes an elaborate

architecture for controlling
downloaded executable

content which provides for

authentication of remote

sources, determining access

control rights based on source
and application and

enforcement mechanisms for

policies.

Active

content
like

scripts,

applets and

operating

system
processes

Content

Protocol
Framework

OS Kernel +

Trusted Browser
+ Security

Managers

Static

policies
specified in

ACLs

1996

30 Deeds [29] ACL based

sandboxing

+ Type
Systems

Deeds implements a history

based access control for

mobile code. It maintains a
selective history of accesses

made by programs and uses

this to discriminate between

safe and unsafe programs.

Active

content

like
scripts,

applets and

operating

system

processes

Deeds

Framework

OS Kernel +

Deeds

Framework

Dynamic

Policies

because the
system

supposedly

learns from

histories and

adapts its
policies to

provide

security and

ease of use.

1998

31 Perseus [49] Microkernel

OS based

isolation +
hardware

based

isolation

Perseus is a security

framework for trustworthy

computing. It is based upon
the Fiasco microkernel and

uses services of the trusted

platform module to guarantee

security. Isolation is provided

by the microkernel using
hardware assisted isolation.

Paravirtual

ized VM

or OS
Processes

Microkernel

Secure

Platform

Secure Platform

+ TPM Hardware

Static

policies as

enforced by
the secure

platform

layer

2001

6. Observations

 The taxonomy and the list of surveyed systems present a clear view of the plethora of research that has
happened in isolation security. There are several observations that can be made about the evolution of isolation.

Observation 1: The current trend in systems design is to combine many isolation techniques into the complete
system as can be seen in projects like Singularity [34] and Nizza [35]. This trend is clearly justified because of
the evolving nature of the threats and threat vectors. It is unlikely that a single isolation technique would be
capable of preventing all attacks.

Observation 2: There is a shift towards mandatory access control based systems from discretionary access
control based systems. This is clearly visible due to the large number of systems that incorporate virtualization
techniques or hardware-based techniques or language-based techniques. Mandatory access control techniques
gives little power to the user to subvert a system due to the access mechanisms implicitly built into the system
during its construction. For example, using type safe compliers like Java automatically removes buffer overflow
vulnerabilities, using virtualization techniques confines program execution to a completely separate machine and
thus is inherently stronger than basic protections provided by a process.

Observation 3: All systems allow some way of specifying static policies for the system. In some cases like
language-based systems, the policies are very implicit while in other cases like the sandboxing-based systems the
policies are explicitly specified. A system or a technique is more prone to configuration errors when it is
explicitly configurable because it requires an intricate understanding of the policies and their dependencies. We,
thus, also need systems that learn policies dynamically from the environment in which they are operating.

Observation 4: There is a growing trend towards using virtualization to provide isolation security. We believe
that this is due to the fact that virtual machines provide an easy and fast way to configure a very secure
environment. Virtual machines provide an easy way to securely wrap (in an attempt to contain) existing
applications.

Observation 5: In spite of the work done for isolation in individual systems, there has been little work done for
isolation in networked systems. We only found one system, Secure Virtual Enclaves [52], which implemented
minimal isolation over a network. For reasons mentioned in section 2 of this paper, isolation in networked
systems is becoming a very important challenge today. Networked systems today provide an easy infrastructure
for supporting the notion of Virtual Systems [1]. Such virtual systems if deployed would require isolation
mechanisms beyond those that are used for individual systems.

7. Summary

 We have introduced taxonomy for isolation techniques in individual systems. The taxonomy comprises five
major categories: language-based, sandbox-based, VM-based, OS kernel-based and hardware-based. A survey of
31 systems was presented with respect to the taxonomy. We note that the current trend in systems is to use a
composition of techniques instead of relying on one technique. Virtualization has been adopted by the systems
community as the technique of choice for providing isolation. There is very little work on isolation in networked
systems. Next-generation systems must build in isolation as a requirement and not as an option.

References

[1]. Anderson, J. Computer security technology planning study. U.S. Air Force Electronic Systems

Division Tech. Rep. (Oct. 1972), 73--51.

[2]. Butler W. Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authentication in distributed

systems: Theory and practice. ACM Transactions on Computer Systems, 10(4):265--310, November

1992

[3]. Fred B. Schneider, Greg Morrisett, Robert Harper. A language-based approach to security.

Informatics: 10 Years Back, 10 Years Ahead, Lecture Notes in Computer Science, Vol. 2000, Springer-

Verlag, Heidelberg, 86-101.

[4]. George C. Necula. Compiling with Proofs. PhD thesis, School of Computer Science, Carnegie Mellon

Univ., Sept. 1998.

[5]. Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick Smith, David

Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A Realistic Typed Assembly Language. In

the 1999 ACM SIGPLAN Workshop on Compiler Support for System Software, pages 25-35, Atlanta,

GA, USA, May 1999.

[6]. B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski, D. Becker, S. Eggers, and C. Chambers.

Extensibility, Safety and Performance in the SPIN Operating System. 15th ACM Symposium on

Operating Systems.

[7]. T. von Eicken, C.-C. Chang, G. Czajkowski, C. Hawblitzel, D. Hu, and D. Spoonhower. J-Kernel: A

capability-based operating system for Java. In Vitek and Jensen [45], pages 369–393.

[8]. P. A. Tullmann, "The Alta operating system," Master's thesis, University of Utah, Dec. 1999.

[9]. M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With Disaster: Surviving Misbehaved Kernel

Extensions. In 2nd Symposium on Operating Systems Design and Implementation, pages 213--227,

1996

[10]. Kiriansky, V., Bruening, D., and Amarasinghe, S. P. 2002. Secure Execution via Program Shepherding.

In Proceedings of the 11th USENIX Security Symposium (August 05 - 09, 2002). D. Boneh, Ed.

USENIX Association, Berkeley, CA, 191-206.

[11]. Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and implementation of a

dynamic optimization framework for Windows. In 4th ACM Workshop on Feedback-Directed and

Dynamic Optimization (FDDO-4), December 2000.

[12]. David A. Wagner. Janus: an approach for confinement of untrusted applications. Master's thesis,

University of California, Berkeley, 1999.. Also available Technical Report CSD-99-1056, UC Berkeley,

Computer Science Division. http://www.cs.berkeley.edu/~daw/papers/janus-masters.ps

[13]. Anurag Acharya and Mandar Raje. Mapbox: Using parameterized behavior classes to confine

applications. In Proceedings of the 2000 USENIX Security Symposium, pages 1-17, Denver, CO,

http://www.cs.cornell.edu/Info/People/jgm/lang-based-security/finalcr.ps
http://www.cs.berkeley.edu/~necula/Papers/thesis.pdf

August 2000.

[14]. R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based fault isolation. In

Proceedings of the 14th ACM Symposium on Operating Systems Principles, pages 203--216, December

1993.

[15]. Sotiris Ioannidis and Steven M. Bellovin. Sub-Operating Systems: A New Approach to Application

Security. Technical Report MS-CIS-01-06, University of Pennsylvania, February 2000.

[16]. A. Dan, A. Mohindra, R. Ramaswami, and D. Sitaram. ChakraVyuha: A sandbox operating system for

the controlled execution of alien code. Technical Report 20742, IBM T. J. Watson Research Center,

1997.

[17]. Berman, A., Bourassa, V., and Selberg, E. 1995. TRON: process-specific file protection for the UNIX

operating system. In Proceedings of the USENIX 1995 Technical Conference Proceedings on USENIX

1995 Technical Conference Proceedings (New Orleans, Louisiana, January 16 - 20, 1995). USENIX

Association, Berkeley, CA, 14-14.

[18]. W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrishnan. One-way Isolation: An Effective Approach for

Realizing Safe Execution Environments. In Proceedings of the 12th ISOC Symposium on Network and

Distributed Systems Security (SNDSS), pages 265–278, February 2005.

[19]. Crispin Cowan, Steve Beattie, Calton Pu, Perry Wagle, and Virgil Gligor. SubDomain: Parsimonious

Server Security. In USENIX 14th Systems Administration Conference (LISA), New Orleans, LA,

December 2000.

[20]. A. Alexandrov, P. Kmiec, and K. Schauser. Consh: A confined execution environment for internet

computations. Usenix, Dec 1998.

[21]. P.-H. Kamp and R. N. Watson. Jails: Confining the omnipotent root. In Proceedings of the Second

International System Administration and Networking Conference (SANE), Maastricht, The Netherlands,

May 2000.

[22]. L. D. Stein, "SBOX: Put CGI scripts in a box," in Proc. 1999. http://stein.cshl.org/software/sbox/

[23]. R. Balzer and N. Goldman. Mediating connectors: A nonbypassable process wrapping technology. In

Proceedings of the 19th IEEE International Conference on Distributed Computing Systems, June 1999.

[24]. T. Fraser, L. Badger, and M. Feldman. Hardening COTS Software with Generic Software Wrappers. In

Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May 1999.

[25]. D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson. SLIC: An Extensibility System for

Commodity Operating Systems. In Proceedings of the 1998 USENIX Annual Technical Conference,

pages 39–52, June 1998.

[26]. T. Jaeger, A. D. Rubin, and A. Prakash. Building systems that flexibly control downloaded executable

content. In Proceedings of the 1996 USENIX Security Symposium, pages 131–148, San Jose, Ca., 1996.

[27]. K. M.Walker, D. F. Stern, L. Badger, K. A. Oosendorp, M. J. Petkac and D. L. Sherman. Confining

root programs with domain and type enforcement. In Proceedings of the 1996 USENIX Security

http://stein.cshl.org/software/sbox/

Symposium, pages 21–36, July 1996.

[28]. T. Shinagawa, K. Kono, and T. Masuda. Flexible and efficient sandboxing based on fine-grained

protection domains. In Proceedings of the International Symposium on Software Security, pages 172--

184, February 2003.

[29]. Edjlali, Guy, Anurag Acharya, and Vipin Chaudhary, "History-based Access-control for Mobile Code."

To appear in Proceedings of the Fifth ACM Conference on Computer and Communications Security. San

Francisco, CA, USA. November 1998.

[30]. McCamant, S. and Morrisett, G. 2006. Evaluating SFI for a CISC architecture. In Proceedings of the

15th Conference on USENIX Security Symposium - Volume 15 (Vancouver, B.C., Canada, July 31 -

August 04, 2006). USENIX Security Symposium. USENIX Association, Berkeley, CA

[31]. Zhao, X., Borders, K., and Prakash, A. 2005. SVGrid: a secure virtual environment for untrusted grid

applications. In Proceedings of the 3rd international Workshop on Middleware for Grid Computing

(Grenoble, France, November 28 - December 02, 2005).

[32]. Emin Gun Sirer. Nexus: A New Operating System for Trustworthy Computing. TRUST (Team for

Research in Ubiquitous Secure Technology) Winter Meeting, Washington, DC, January 2006. (Talk)

[33]. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum M., and Boneh, D. Terra: A virtual machine-based

platform for trusted computing. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP 2003).

[34]. Galen Hunt and James Larus. Singularity: Rethinking the Software Stack. Operating Systems

Review, Vol. 41, Iss. 2, pp. 37-49, April 2007. ACM SIGOPS.

[35]. Hartig, H. et. al. The Nizza secure-system architecture. International Conference on Collaborative

Computing: Networking, Applications and Worksharing, pp. 10, 21 Dec 2005.

[36]. James E. Smith, Ravi Nair, "The Architecture of Virtual Machines," Computer, vol.38, no.5, pp. 32-38,

May, 2005

[37]. Certification Report for Processor Resource/System Manager (PR/SM) for the IBM eServer zSeries

900, BSI-DSZ-CC-0179-2003, 27 February 2003, Bundesamt fur Sicherheit in der Informationstechnik:

Bonn, Germany. URL: http://www.commoncriteriaportal.org/public/files/epfiles/0179a.pdf

[38]. V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A Transparent Dynamic Optimization System,”

Proc. ACM SIGPLAN 2000 Conf. Programming Language Design and Implementation, ACM Press,

2000, pp. 1-12.

[39]. T. Lindholm and F. Yellin, The Java Virtual Machine Specification, 2nd ed., Addison-Wesley, 1999.

[40]. D. Box, Essential .NET, Volume 1: The Common Language Runtime, Addison-Wesley, 2002.

[41]. J. Sugerman, G. Venkitachalam, and B-H. Lim, “Virtualizing I/O Devices on VMware Workstation’s

Hosted Virtual Machine Monitor,” Proc. General Track: 2001 Usenix Ann. Technical Conf., Usenix

Assoc. 2001, pp.1-14.

http://www.research.microsoft.com/os/singularity/publications/OSR2007_RethinkingSoftwareStack.pdf
http://www.research.microsoft.com/os/singularity/publications/OSR2007_RethinkingSoftwareStack.pdf
http://portal.acm.org/toc.cfm?id=J597
http://portal.acm.org/toc.cfm?id=J597
http://www.commoncriteriaportal.org/public/files/epfiles/0179a.pdf

[42]. M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: a new

kernel foundation for UNIX development. Proc. Summer 1986 USENIX Conference, pages 93–112,

July 1986.

[43]. Kaashoek, M. F., Engler, D. R., Ganger, G. R., Briceño, H. M., Hunt, R., Mazières, D., Pinckney, T.,

Grimm, R., Jannotti, J., and Mackenzie, K. 1997. Application performance and flexibility on exokernel

systems. In Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles (Saint

Malo, France, October 05 - 08, 1997). W. M. Waite, Ed. SOSP '97. ACM, New York, NY, 52-65.

[44]. Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski (2007-06-27). "Price of Safety: Evaluating

IOMMU Performance" (PDF). Proceedings of the Linux Symposium 2007, Ottawa, Ontario, Canada:

IBM Research

[45]. Utilizing IOMMUs for Virtualization in Linux and Xen, by M. Ben-Yehuda, J. Mason, O. Krieger, J.

Xenidis, L. Van Doorn, A. Mallick, J. Nakajima, and E. Wahlig, in Proceedings of the 2006 Ottawa

Linux Symposium (OLS), 2006.

[46]. T. Halfhill. ARM Dons Armor: TrustZone Security Extensions Strengthen ARMv6 Architecture.

Microprocessor Report, 2003. Document available at the URL:

http://www.arm.com/miscPDFs/4136.pdf

[47]. Heiser, G., Uhlig, V., and LeVasseur, J. 2006. Are virtual-machine monitors microkernels done right?

SIGOPS Oper. Syst. Rev. 40, 1 (Jan. 2006), 95-99.

[48]. Fabrice, B. QEMU, a Fast and Portable Dynamic Translator , USENIX 2005 Annual Technical

Conference, FREENIX Track

[49]. B. Pfitzmann, J. Riordan, Christian Stüble, M. Waidner, A. Weber: The PERSEUS System

Architecture; Verlässliche Informationssysteme (VIS) '01, DuD Fachbeiträge, Vieweg Verlag, pp. 1-18,

Kiel, 2001.

[50]. Tullman, P. and Lepreau, J. 1998. Nested Java processes: OS structure for mobile code. In Proceedings

of the 8th ACM SIGOPS European Workshop on Support For Composing Distributed Applications

(Sintra, Portugal)

[51]. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and

Warfield, A. 2003. Xen and the art of virtualization. In Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles (Bolton Landing, NY, USA, October 19 - 22, 2003)

[52]. Shands, D. et. al. Secure virtual enclaves: Supporting coalition use of distributed application

technologies. ACM Trans. Inf. Syst. Secur. 4, 2 (May. 2001), 103-133.

[53]. KVM White Paper. URL : http://www.qumranet.com/art_images/files/8/KVM_Whitepaper.pdf

[54]. Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and Performance in the Denali

Isolation Kernel, Proceedings of the Fifth Symposium on Operating System Design and Implementation

(OSDI 2002), Boston, MA, December 2002.

http://www.arm.com/miscPDFs/4136.pdf
http://www.usenix.org/publications/library/proceedings/usenix05/tech/freenix/bellard.html
http://www.qumranet.com/art_images/files/8/KVM_Whitepaper.pdf

[55]. Adam Wiggins, Simon Winwood. Legba: Fast hardware support for fine grained protection. In

Proceedings of the 8th Australia-Pacific Computer Systems Architecture Conference (ACSAC’2003)

[56]. R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin, S. Berger: sHype: Secure

Hypervisor Approach to Trusted Virtualized Systems. IBM Research report RC23511.

[57]. Shaya Potter, Jason Nieh, and Matt Selsky. Secure Isolation of Untrusted Legacy Applications.

Proceedings of the 21st Large Installation System Administration Conference (LISA '07), pp 117-130.

[58]. Erlingsson, U.; Schneider, F.B., "IRM enforcement of Java stack inspection," Security and Privacy,

2000. S&P 2000. Proceedings. 2000 IEEE Symposium on , vol., no., pp.246-255, 2000

[59]. Simics. URL : http://www.virtutech.com/

[60]. Intel Virtualization Technology: Hardware Support for efficient processor virtualization. URL:

ftp://download.intel.com/technology/itj/2006/v10i3/v10- i3-art01.pdf

[61]. B. Clifford Neuman, The Virtual System Model: A Scalable Approach to Organizing Large Systems,

Ph.D. Thesis, University of Washington, Department of Computer Science and Engineering Technical

Report 92-06-04, June 1992

http://www.virtutech.com/
ftp://download.intel.com/technology/itj/2006/v10i3/v10-i3-art01.pdf

